博客
关于我
Li‘s 影像组学视频学习笔记(15)-ROC曲线及其绘制
阅读量:563 次
发布时间:2019-03-09

本文共 905 字,大约阅读时间需要 3 分钟。

本笔记来源于B站Up主: 有Li 的影像组学系列教学视频

本节(15)主要介绍:

  • ROC 曲线

ROC = receiver operating characteristic curve, 受试者工作特征曲线

横坐标:FPR = false positive rate, 假阳
纵坐标:TPR = true positive rate, 真阳
ROC曲线上的点,表示在不同阈值时对应的FPR和TPR
上面的阈值指预测阳性概率为多大及以上时,判定为阳性
关注四个点来理解ROC曲线:
(0,0) :FPR = 0,TPR = 0, 即全部预测N
(1,1) :FPR = 1,TPR = 1,即全部预测P
(1,0) :FPR = 1,TPR = 0,即全部预测错了
(1,1) :FPR =1,TPR = 1, 即全部预测对了

  • AUC = area under curve

代码(基于之前的数据结果):

from sklearn.metrics import roc_curve, roc_auc_scorey_probs = model_svm.predict_proba(X)#print(y_probs)#print(y_probs[:,1])fpr,tpr,thresholds = roc_curve(y,y_probs[:,1],pos_label = 1)plt.plot(fpr,tpr,marker = 'o')plt.xlabel('fpr')plt.ylabel('tpr')plt.show()auc_score = roc_auc_score(y,model_svm.predict(X))print(auc_score)
#select the best thresholdJ = tpr - fpridx = argmax(J)best_threshold = thresholds[idx]

作者:北欧森林

链接:https://www.jianshu.com/p/496bb5f371d3
来源:简书,已获授权转载

RadiomicsWorld.com “影像组学世界”论坛:

你可能感兴趣的文章
mysql的logrotate脚本
查看>>
MySQL的my.cnf文件(解决5.7.18下没有my-default.cnf)
查看>>
MySQL的on duplicate key update 的使用
查看>>
MySQL的Replace用法详解
查看>>
mysql的root用户无法建库的问题
查看>>
mysql的sql_mode参数
查看>>
MySQL的sql_mode模式说明及设置
查看>>
mysql的sql执行计划详解
查看>>
mysql的sql语句基本练习
查看>>
Mysql的timestamp(时间戳)详解以及2038问题的解决方案
查看>>
mysql的util类怎么写_自己写的mysql类
查看>>
MySQL的xml中对大于,小于,等于的处理转换
查看>>
mysql的下载安装
查看>>
Mysql的两种存储引擎详细分析及区别(全)
查看>>
mysql的临时表简介
查看>>
MySQL的主从复制云栖社区_mysql 主从复制配置
查看>>
MySQL的事务隔离级别实战
查看>>
mysql的优化策略有哪些
查看>>
MySQL的使用
查看>>
mysql的全文检索的方法
查看>>